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SUMMARY 
Free surface phenomena are described by equations that exhibit two types of non-linearities. The first is 
inherent to the equations themselves and the second is caused by the application of boundary conditions at a 
free surface at an unknown location. Numerical calculations usually do not specifically recognize the second 
non-linearity, nor treat it in a fashion consistent with the more obvious non-linearities in the boundary 
conditions. A consistent formulation is introduced in the present paper. The field equation is integrated and 
the free surface boundary conditions are applied on the unknown geometry by means of appropriate series 
expansions. The consistent formulation introduces improvements in accuracy and computing speed. The 
method is demonstrated on several hydrodynamic free surface problems and an error analysis is included. 

KEY WORDS Boundary element Free surface Hydrodynamic 

1. INTRODUCTION 

The boundary element method (BEM) has been successfully applied to analyse phenomena 
involving a free surface such as groundwater flow and hydrodynamic problems. When compared 
with finite element or finite difference schemes, the major advantage provided by the BEM is the 
ease in regridding the geometry of the flow region. The equations describing free surface problems 
are non-linear by themselves, but additional non-linear effects arise from the fact that boundary 
conditions must be applied at a surface whose location is unknown. Usually this difficulty is 
circumvented by neglecting the change in the geometry, applying the conditions at the previously 
computed position of the surface and iterating to refine the new geometry. This method generally 
requires small time steps to preserve accuracy. For two-dimensional groundwater flow, Liggett ' 
derived a formulation of the BEM that explicitly recognizes the non-linear effect introduced by 
the unknown position of the free surface. The purpose of this paper is to extend the concept to the 
more complex case of hydrodynamic problems. 
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2. GOVERNING EQUATIONS 

Consider the general two-dimensional hydrodynamic problem shown in Figure 1. Under the 
assumptions of inviscid and irrotational flow of an incompressible fluid, the flow field can be 
defined by means of a velocity potential 0: 

v=v0, (1) 
where V is the velocity vector. Introducing the continuity equation, it follows that the potential 
must be harmonic: 

vzO=o. (2) 
The boundary condition on the walls can be written as 

where q and n are the outward-directed flow velocity and unit vector, both normal to the walls. 
Radiation boundary conditions are not included in the analysis. 

On the free surface there are two conditions that must be satisfied. The first is the kinematic 
boundary condition derived from the assumption that the surface is a material line. Hence if the 
surface is given by 

the assumption translates into 
z = rtb, t ) ,  (4) 

The dynamic boundary condition establishes continuity of the normal stresses at the free 
surface and is expressed by Bernoulli's equation: 

d f+i [ (dx) l+(3]+N+--=0,  a 0  I a@ 0 1  

P R  

q(x, 291) 

Figure 1. Definition sketch for the two-dimensional hydrodynamic problem 
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where p is the density of the fluid, o is the surface tension, g is the gravitational acceleration and 
R is the radius of curvature given by R - = - qxJ[(qx)’ + lI3/’. 

Choosing L as a characteristic length and defining the dimensionless variables 

x* = x/L, z* = z/L, q* = q/L, 

t* = t J(g/L), v* = v/J(gL), @* = @/JW 1, (7) 

V*=V@*, (8) 
V’@*=O, (9) 

the governing equation and the boundary conditions reduce to 

aq* 1 a@* 
at* C O S ~  an*’ 
-=-- 

--+-[(-) a@* 1 a@* 2 +(!gy]+v*+mR’=O, 1 1  
at* 2 ax* 

where the Weber number appears and is defined as 

We’ = pgL2/a. (13) 
The angle 8 denotes the slope of the free surface measured from the horizontal and is positive in 
the counterclockwise direction. In the subsequent discussion the asterisks will be dropped for 
simplicity. 

The equations can be further modified by the inclusion of a preferred direction along which the 
surface nodes are allowed to move. Figure 2 shows the surface at time level k and a node that is to 
be moved along the z’-axis to a position on the surface at time level k + 1. The choice of the angle y 
depends on the problem to be solved. Flow fields showing mild variations of the surface elevation 
can be adequately represented by vertical motion of the nodes. For highly contorted flows the 2’- 

axis may be given by the local velocity vector so that surface nodes tend to accumulate around 
locations experiencing large changes in boundary shape. For nodes in contact with solid 

z z‘ 

q W‘, 1) ux 
Figure 2. Movement of a surface node along the Y-axis 
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boundaries the angle y is determined by the geometry of the wall so that the node remains 
attached to the boundary. 

With the notation of Figure 2, equations (1 1) and (12) respectively become 

on z'=q' ,  
arl' 1 am 
-= 
at sin ( y  - 3i 

2 amam 

where the subscript on the time derivative indicates that x' is to be held fixed. 

3. THE BOUNDARY ELEMENT METHOD 

The boundary value problem described in the previous section can be transformed by means of 
Green's second identity into an integral equation as shown by Liggett and Liu:' 

where r is the boundary of the flow region and r is the distance from point P to a point Q located 
on the boundary. Point P can be either in the interior of the domain or on the boundary. In the 
former case a = 27r, whereas in the latter a is the angle subtended by the boundary at a point P. 
Equation (16) yields the value of the potential at P provided that both the potential and its 
normal derivative are known on the boundary. 

Equation (16) is an integral equation for the potential or the normal derivative when P is 
moved to the boundary. A set of points connected by straight lines is used to approximate the 
boundary of the flow region; linear shape functions are used to represent the variation of the flow 
variables along the elements. Additional details of the implementation are discussed in Liggett 
and Liu.2 

Following Liggett,' once the boundary is discretized, the integral equation (16) applied to a 
base point i located on the boundary results in 

where N, is the number of elements on the boundary of the flow region and 

T"= -If+115j+1, (18) 

Tb=lf -1, r j ,  (19) 

T'= - I $ + I ~ ~ j + l ,  (20) 
Td = I$ - 1 2  r j ,  (21) 

with 
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Figure 3 describes the geometric parameters which appear in the integrals. All of the integrals can 
be computed analytically and the final expressions for equations (18)-(21) appear in Appendix I. 

Setting a@@n = 0 on all parts of the boundary results in a constant potential everywhere. 
Introducing this fact in equation (17) yields the result that ai is equal to the sum of T" and Tb for 
all the elements. 

4. COMPUTATIONAL STRATEGY 

A straightforward procedure often used to calculate the position of the free surface at all times is 
the mixed Eulerian-Lagrangian m e t h ~ d . ~  If N nodes are used to discretize the solid boundaries 
and M nodes are used to represent the free surface, there are N + M unknown potentials and M 
unknown normal derivatives. Application of equation (17) yields N +  M boundary element 
equations; M additional equations are obtained from the dynamic boundary condition (12) once 
it has been properly linearized and written in finite difference form. A matrix equation for this 
system can be written as 

where [ R ]  and [ L ]  are functions of the geometry and the shape functions and the vectors {@} 
and { 2@/dn}  contain the nodal values of the flow variables. The equations can be assembled in a 
linear system that is solved for the N + 2 M  unknown flow variables. The kinematic boundary 
condition is then applied to move the M nodes on the free surface in a Lagrangian fashion to their 
new positions. The procedure is repeated for subsequent time steps. Variations on this process 
were used by Kim et aL4 who applied the method to investigate the run-up of solitary waves, and 
by Nakayama and Washizus to study non-linear sloshing in closed two-dimensional containers. 

i+l 

Figure 3. Local co-ordinate system to integrate over one linear element between nodes j and j +  1. Point i is the base point 
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5. A GEOMETRICAL INCONSISTENCY 

If the algorithm outlined above is followed, an obvious inconsistency results because the 
governing equation (26) is solved in an Eulerian frame of reference. Therefore the matrices R and 
L are evaluated in terms of the geometry of the flow domain at the old time step. Denoting the 
time level with a superscript, equation (26) is 

[R]k{a?}k+l=[L]k - . 
{:y+l 

This inconsistency was pointed out by Liggett' in applying the BEM to free surface groundwater 
flow. The appearance of the geometry and the flow variables at different time levels in (27) results 
in a non-linearity which is not immediately apparent but is illustrated subsequently. 

One way to circumvent the problem of enforcing the boundary conditions at an unknown 
location is to take equation (27) as a linearization of the actual equations and to use the most 
recently computed geometric variables as a guess for their values at the next time level. Then, after 
updating the geometry to level k + 1, the flow variables are recalculated to check the adequacy of 
the guess. The process can be repeated iteratively until the guessed and computed values agree. 

Another approach used by several authors to treat the non-linearity is to use a series expansion 
of the governing equations. Dold and Peregrine6 employed the complex variable BEM combined 
with higher expansions of the differential equations. Dommermuth and Yue' extended the 
method to the axisymmetric case. A different technique was used by Liggett' who proposed a 
series expansion of the integral equation and the boundary conditions so that equation (26) can 
be written in a fully consistent manner, namely 

The development of this expression was presented by Liggett for the case of free surface 
groundwater flow for which the dynamic boundary condition reduces to a rather simple form. 
One objective of the present paper is to derive the detailed terms of equation (28) for the case of 
the hydrodynamic problem. 

6. DERIVATION OF A CONSISTENT FORMULATION 

In this section an expansion of the governing equations is carried out. The expansion leads to a set 
of consistent, linearized equations for hydrodynamic free surface problems. Additional details are 
available in Reference 8. 

6.1. Expansion of the integral equation 

Equation (17) can be rewritten for the advanced time step as 

(a: + Aai)(@: + Aai) = (a?! + AQj)( T! + AT) + ((I$ + + Amj + 1)( Ti" + AT?) 
j =  1 

where the incremental A-terms reflect the change in the geometry and the flow variables with 
respect to the previous time level. The AT and Aa-terms in (29) reflect the non-linearity stemming 
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from applying the boundary conditions at the unknown position of the free surface. The 
procedure of applying the boundary conditions at the known time level is equivalent to 
linearizing the equations assuming that the AT and Act-terms are zero. 

Subtracting (17) from (29) and neglecting the second-order terms produces 

~ f A @ ~ + @ f A c t , =  @ ~ A ~ + T ~ A @ j + + ~ + l A T ~ + T ~ A m j + l  
j= 1 

where the A-quantities appear as unknowns. 
The change in the geometry, expressed by AT and Act, is found from the integration from base 

point i over the element subtended by nodes j and j +  1 (see Figure 3) as a function of the co- 
ordinates of these three points. In terms of the x- and z-coordinates, 

where T is either T", Tb, T' or Td. Further, the change in the global co-ordinates is determined 
from the changes in the local co-ordinate system over which the integrations in equsttions 
(22)-(25) are carried out; for example, 

(3 2) 
aT  a T  at j  aT  a T  ayi 
ax, at, axj at,+l ax, ayi axj +-- +--, -=-- 

where the symbols correspond to the notation in Figure 3. As before, Acti can be determined as the 
sum of A T  and ATb over all the elements on the boundary. 

Summarizing, the required derivatives in (31) and (32) are 

These derivatives can be found by differentiating the expressions given in Appendix I. From 
Figure 2, Ax and Az are related to Aq' by 

AX = Aq' cos y, Az = Aq' sin y. (34) 
The final form of the boundary element equation is 

where 
A T = A q ~ b i T + A @ j T + A q > + 1 6 j + l T ,  

a a bi = cos yi -+sin yi -, 
axi az, 

a at, a at,+, a a(, a 
axi axi a t j  ax, at,+, axi aci _- --- +-- +--. 
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Equation (35), with the definitions (36)-(38), provides NE equations relating A@, A(d@/Jn), and 
A$. For linear boundary elements, N ,  = N + M, where NE is the number of elements and N and 
M are the numbers of nodes on the solid boundary and free surface respectively. 

6.2. Expansion of the free surface dynamic boundary condition 

time level: 

where 

The dynamic boundary condition in (15) can be used to expand the potential to the advanced 

A @ = A t [ y k + e , A Y ] ,  (39) 

A@ = ak+l - ak, (404 

The parameter 8,  acts as an implicitness factor in the time-stepping scheme. Further expansion of 
P leads to 

- Sec2 7 (gy (gy A tan p, 
(tan y - tan p k ) 2  

where O2 is a second implicitness factor. The tangential derivative of the potential is approximated 
by a three-point formula so that 

A ( - : ) j  = C f A @ j + , + C g A @ j + C j A ~ j - 1 .  (43) 

The coefficients of A@ in (43) depend on the co-ordinates of the free surface nodes: 

where Z j  is the distance between nodes 1 and j measured along the free surface. 
The terms AR - and A tan B are derived from the geometry of the free surface. For this purpose 

a parabola is fitted choosing three contiguous nodes and the resulting expression is used to 
determine the slope and curvature at the middle point. After some manipulation, A tan fl and 
AR - are given by 

A tan Bj= B; Aq;- + BjOAq;+ Bf Aq;+ 1, 

ARJT1 =A? + A ? A ~ ; +  A; AV;+ 1. 

(45) 

(46) 

The coefficients multiplying the Arf-terms and the procedure to obtain equations (45) and (46) 
appear in Appendix 11. 
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The final form of the dynamic boundary condition is 

Do=DlA@j+ 1 +D,A@j+D3A@j- 1 + D ,  A - + DSAttJ- 1 +D,Avi+ D,AvJ+ 1, (47) ( E)j 
where 

D ,  = At Cg O1 [cot (yj - / I j )  (") an - (g)J - 1, 

sec2yj A +  D = At B; 8 [ ( F) an ( ") as j(tanyj-tan/?j)Z 
sec2 y j  

- *to ,  (3. sin y j ) ,  D6 = AtBg8, [ (") Jn (") 8s j(tanyj-tanBj)2 

sec2yj A :  
D ,  = A t B j  dl [ ( g)j (2) Js j(tan y j  - tan j?j)z ] -Ate2&. 

6.3. Expansion of the free surface kinematic boundary condition 

The kinematic boundary condition in (14) is discretized as 

A1 = At [ Z k  + O3 A Z ] ,  
where 

and 

Zk= (E)k. 
sin(y-B') an 

The parameter 8, acts as an implicitness factor similar to 8, and 8, in the dynamic boundary 
condition. Expansion of Z k  leads to 

1 
AZ= 

+ (Ey c0s3 B' (cosy +sin y tan /Ik) Atan j. 
sin2 (y - 8') an (59) 
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Proceeding in the same way as with the dynamic boundary condition, the final discretization of 
the kinematic condition is 

where 
E o =  -At [ 1 (”> 

sin(yj-Bj) an 7, 
Ate, 

sin ( y j -  /?,”)’ 
E, = 

cos3flj(cosyj+sinyjtanBj) 

COS, Bj(cos y j +  sin y j  tan Pi) 

COS, Bj(cos y j +  sin y j  tan Sj) 

sinZ(yj-Bj) 

sinZ(yj-Bj) 

sinZ(yj-Bj) 

E2=At8,Bf 

E, = At 8, B; 

E,  = At 8, BJ 

6.4. Assembly of the equations 

The governing equations consist of the boundary element equation (35) and the dynamic and 
kinematic free surface boundary conditions given respectively by (47) and (60). The governing 
equations, including the free surface boundary conditions, are all linear in the corrections to the 
potential, the normal derivatives and the position of the nodes on the free surface (i.e. linear in A@, 
A(a@/an) and Aq’). Thus a system of linear algebraic equations results for the unknown flow 
variables on the boundary and the location of the free surface at the advanced time step. 

The system of equations has a dimension of N + 3M, where N and M are the numbers of nodes 
on the solid boundaries and free surface respectively. 

7. EXAMPLES 

The consistent method outlined in the previous section was implemented in a computer code. To 
verify its performance, computed results were compared against physical experiments, existing 
non-linear analytical solutions and numerical results obtained with an iterative 
Eulerian-Lagrangian scheme. In the comparisons the Weber number was either infinite or 
sufficiently large so that surface tension effects could be neglected. Unless otherwise noted, the 
surface nodes were moved with the local velocity vector and the implicitness parameters B,, Bz, 8 ,  
were set to a common value given by 8=0.55. This section summarizes the results of the 
comparisons. 

7.1. Triangular wave 

Figure 4 shows the initial position of a free surface in a container. The subsequent motion of the 
fluid is due to gravitational forces. The problem allows a comparison of the two numerical 
methods for a moderate-amplitude wave. 

The discretization of the geometry was the same for both methods, i.e. 42 nodes with 25 on the 
free surface. To establish a common set of parameters, no attempt was made to use a dynamically 
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Figure 4. A triangular wave in a container 

- Consistent 
- -_ -_  Eulerian-Lagrangian I 

-0.4’ . ’ . ’ . ’ . ’ . I 

0 1 2 3 4 5  
T h e  

Figure 5. Evolution in time of the mass error for the triangular wave using two computational schemes. Approximately 
equal mass errors result using a time step four times larger for the consistent scheme 

varying time step. The iterative Eulerian-Lagrangian scheme3 used 0.005 as a time step, which is 
such that no more than one iteration was needed at each time level to achieve convergence. The 
time step for the consistent scheme was set to 0.02, which produces a mass error similar to that 
obtained with the iterative scheme. 

The percentage mass error for the two methods is shown in Figure 5. The mass error is 
computed as the difference between the mass at a particular time level and the initial mass, 
divided by the initial mass. From Figure 5 it is apparent that the consistent scheme, even though 
it uses a four-times-larger time step, yields a mass error which is comparable to, but slightly less 
than, that obtained with the iterative scheme. Figure 6, which displays the time history of the 
elevation of two points on the free surface, shows that the results are practically identical for the 
two schemes. 
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- Consistent 
----- Eulerian-Lagrangian 

-0.10 ' . a . ' . ' . ' . . ' . . . ' . . ' ' 
0 1  2 3 4 5  

Time 
Figure 6. Elevation of the centre and right-most points in the triangular wave using two computational schemes 

Owing to the additional computations and the larger linear system, the consistent scheme 
requires more computer resources per time step. However, the overall computing time is reduced 
by choosing a larger time increment. On a VAX 3600 the iterative scheme took 5074 CPU 
seconds to simulate 5 s  of wave motion. The same calculation using the consistent scheme 
employed 1642 CPU seconds. Therefore, although each time step took approximately 30% 
longer with the consistent scheme, the overall speed-up factor was 3.1. 

7.2. Generation of tsunamis 

A laboratory physical model for the generation and propagation of large ocean waves 
produced by sea bed movements was developed by H a m m a ~ k . ~  The physical model employed a 
channel similar to the one depicted in Figure 7. Results from the experimental model are 
compared in Figure 8 with the predictions of the present consistent BEM. 

In the laboratory experiments a piston on the bottom moved upwards in time such that 

By varying the velocity of the piston, three cases are discussed by Hammack: impulsive, 
transitional and creeping. The values of the parameters a. and do for the three cases are 
ao= 5.843, 1.041, 0.046 and do =0.010, 0.005, 0.015 respectively. All variables are dimensionless. 

For the boundary element calculations the domain was limited to two units in the horizontal 
direction as shown in Figure 7. Equation (66) was used as a boundary condition for the region of 
the piston. In the absence of an appropriate radiation boundary condition at the right wall, 
reflected waves will be generated and move towards the left. The discretization employed 72 
nodes with 43 on the free surface. Figure 8 shows the time history of the left-most surface node 
compared with the experiments. The computed solutions (solid lines) agree well with the 
experimental data up to the point when reflected waves reach the left wall. The maximum wave 
amplitudes in Figure 8 are 0.2 and 0.1 of the layer depth in the impulsive and transitional cases 
respectively and, according to Hammack: the experiments show significant non-linear effects. 

7.3. Solitary wave 

To assess the performance of the consistent scheme against an analytical solution, a pro- 
pagating solitary wave in a tank was examined. The wave was initially set moving to the right as 
shown in Figure 9 and the surface profiles were followed in time. 
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I Initial free-surface position 

Figure 7. Water tank to simulate waves generated by bottom movement 

1 .o 
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0 Experlmental 

Transition 
TIMo Oa6 

0.2 

-0.21 ' ' ' ' ' ' ' ' 
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0.2 

0.1 

0.0 

Creeplng 

0 50 100 150 200 250 

nme, t 

Figure 8. Movement of the surface node at the left wall (x = -0.61) for the three cases in Hammackg 

The solitary wave is an approximate analytical solution in which weakly non-linear effects 
balance dispersive effects so that the wave maintains its original shape as it moves.'0*'' Figure 9 
shows the computational domain for the test problem. Using the fluid depth as the reference 
length to obtain dimensionless variables, the solitary wave is generated by establishing the 
following initial conditions on the free surface: 

where 
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t Motion I 

X 

Figure 9. Initial condition and computational domain for the solitary wave 
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X 

- 0 . 2 ~ ~ ~ ' ~ ' " ~ ' " ~ ' " ~ ' " ~ ' " ~ ~ ~ ' ~ ~ ~ ' ~ ' ~ ~ '  

Figure 10. Motion of the solitary wave compared with the analytical solution 

The foregoing is a second-order-correct analytical solution;' xo corresponds to the initial 
location of the crest (taken to be 12) and ,I is the wave speed. 

Figure 10 shows the motion of a calculated wave compared to the analytical solution. The 
latter is simply the initial profile displaced in time. The free surface height and the velocity 
potential are shown and the agreement for both is excellent. The numerical solution employed 
At = 0.25, As = 0.125 and 8 = 05,  which corresponds to a fine-mesh solution. Surface nodes were 
moved vertically and only every eighth node is displayed. To achieve the agreement shown it was 
necessary to use the second-order analytical solution as opposed to a simpler first-order solution. 
A discussion of the effect of truncation errors on the numerical solution is given in Section 8. 
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7.4. Non-linear standing waves 

Free oscillations of moderate-amplitude non-linear waves are examined in the domain shown 
in Figure 11 and are compared against a higher-order analytical solution. For the case of infinite 
depth an approximate analytical solution was found by Penney and Price12 in terms of a fifth- 
order perturbation expansion. According to the theory, the assumption of deep water is valid in a 
container with the dimensions shown in the figure. 

The initial location of the surface is given by 

q ( x ,  0) = ( E  +&&3-*&5) cos x +(3&2-&&4) cos 2x 

+ ( $ E ~  - M E ~ ) C O S  ~ X + ~ E ~ C O S ~ X + ~ E ~ C O S ~ X ,  (70) 

(7 1) 

where E is a measure of the amplitude and is related to the frequency by 
0 2  = 1 -1&2 - S & 4 .  

The frequency o is equal to 242, where t is the dimensionless period. At the position given by 
equation (70) the surface is momentarily at rest and the potential is everywhere equal to zero on 
the surface. 

The consistent boundary element calculation used 21 nodes on the free surface. Figure 12 
shows the time history of two points on the surface for a 1/2-subharmonic wave with period 
'I = 6.32. Two profiles of the surface are shown in Figure 13 at times 2/2 and 'I. From the figures it 
can be observed that the height of the crests is greater than the depth of the troughs, a well-known 
feature of non-linear waves. The computation agrees well with the approximate analytical 
solution. 

4 128 

8. TRUNCATION ERRORS 

The leading truncation errors of the consistent BEM generally arise from the dynamic boundary 
condition. The error analysis is summarized in Appendix 111. The form of the leading errors and 
their impact on the propagating solitary wave of Section 7.3 are discussed in this section. 

A discrete solution of the dynamic boundary condition given by equation (15), when truncation 
errors are considered, corresponds to a solution of a modified form of the equation which is found 

C-----n+n+ 
Figure 11. Flow domain for non-linear standing waves in a deep container 
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- Numerical 
o Analytical 

0.3 I 

0.2 

c 0.1 
0 
0 
.- c 
$ 0.0 
Ei 

-0.1 

-0.2 - 
0 1 2 3 4 5 6 7  

Time 

Figure 12. Time histories of two points on the free surface at x = 0 and n for the non-linear standing wave in Figure 11 

Numerical 
O Analytical 
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X 

Figure 13. Surface profiles for non-linear standing waves corresponding to time levels of r/2 and r, where r is the period 

by adding the following terms to the right side of(15): 

acP a3a ' { 1+8 [ (SY - I]] a s p +  0(At3,  AtAs', As3), 

(72) 
where 8 is the implicitness factor 8,. Only the derivatives appearing in the leading truncation 
terms are shown; they are evaluated at time level k + 8 and spatial position j, where 0 I 8 I 1. The 
spatial mesh increments at time levels k and k+ 1 are denoted by As' and Ask+' respectively. 
Usually their ratio is close to unity, thus simplifying the third term. The leading truncation errors 
in (72) are first-order in time and second-order in space. 
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The effect of the spatial truncation error on the propagating solitary wave of Section 7.3 is 
illustrated in Figure 14. The impact of a coarse surface mesh is shown in Figures 14(a) and 14(b). 
The surface mesh is As = 2 as compared to As = 0.1 25 in Figure 10. The numerical solution clearly 
suffers from dispersion or a false numerical wave speed, the magnitude of which varies over the 
profiles. To minimize the effects of time truncation errors in Figure 14, a small time step, At = 05, 
and 8 = 0-5 were used. Also, As refers to the average surface mesh and, when varied, the surface, 
bottom and end boundaries were meshed in the proportion 2:4:3.  

The results in Figure 14 are consistent with the leading (As)2-error term in equation (72). First, 
dispersion in the @-profile is suggested by the presence of the derivative a3@//as3. Secondly, the 
crossover points between the numerical and analytical @-profiles approximately correspond to 
the zeros of a3@//as3 as found from the analytical solution. Thirdly, an integral measure of the 
error, as shown in Figure 14(c), is proportional to  AS)^. The integral error is defined as the 
integral of I@N -OR1 over the spatial region 0 I x 5 36 at time t = 10, where ON is a numerical 
solution and @, a reference solution. The integral error in Figure 14(c) does not go through the 
origin when referenced against the second-order analytical solution, but does when referenced 
against a fine-spatial-mesh numerical solution. This is not unexpected since the analytical 
solution is an approximate solution of the non-linear equations. 

Figure 15 is similar to Figure 14 and illustrates the effect of the leading time truncation error in 
equation (72) on the propagating solitary wave. The time error introduces the group (8-0-5)At, 
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Figure 14. Effect of spatial truncation errors on the solitary wave 
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Figure IS. Effect of temporal truncation errors on the solitary wave 

which changes sign when 8 is above or below 0.5. To minimize the effect of spatial truncation 
errors on the results in Figure 15, a fairly fine spatial mesh of As = 0.5 was used. The time step was 
At=0-5 in Figures 15(a) and 15(b) and was varied along with 8 in Figure 15(c). 

The time-evolving profiles in Figures 15(a) and 15(b) display the effect of the parameter 8. 
Positive and negative numerical damping appears when 8 7 1 and 0.3 respectively. With positive 
damping the wave decays in amplitude and the potential spreads out. With negative damping the 
wave grows in amplitude and the gradient of the potential steepens. Both effects are non-physical 
for the present problem, and the negative damping leads to unbounded growth of the wave 
amplitude. 

The numerical damping is consistent with the leading time truncation term in (72), which 
contains d2@/ds2. This is a damping term and its coefficient changes sign as noted to cause 
positive or negative damping. The leading time error is also consistent with the integral error in 
Figure 15(c), which is proportional to (8-0.5)At when referenced against a fine-mesh numerical 
solution. The change of slope at (8-0.5)At=O is due to the use of absolute values in the integral 
error. Again, the integral error does not go to zero when referenced against the analytical 
solution. From a comparison of Figures 15(c) and 14(c), it appears that temporal truncation 
errors are often of similar magnitude to spatial truncation errors, but the temporal errors can be 
reduced by using 8-values close to 0-5. 
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The truncation error analysis was carried out in terms of the velocity potential CD. Rather 
surprisingly, the form of the leading errors as given by (72) appears to apply to both the potential 
and the wave height profiles for the solitary wave. Furthermore, equation (72), representing the 
truncation errors in the dynamic boundary condition, appears to describe the leading errors in 
the entire numerical system. 

9. CONCLUSIONS 

A new boundary element algorithm has been developed to solve free surface, non-linear 
hydrodynamic problems under the assumption of potential flow. The formulation explicitly 
incorporates the non-linearity arising from the application of the free surface boundary condi- 
tions at an unknown location. The present scheme uses a series expansion of the geometric 
parameters and the flow variables appearing in the governing integral equation and free surface 
boundary conditions to obtain a more accurate estimate of the geometry at the new time level. 
The algebraic process is complex, but once the resulting expressions are implemented, the 
consistent method improves the computational speed for a given degree of accuracy. The method 
can be further improved by adding enhancements such as variability in the time step and 
condensation of the linear system. 
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APPENDIX I: GEOMETRIC COMPONENTS OF THE BOUNDARY ELEMENT 
EQUATION 

Referring to Figure 3, the analytic expressions for equations (18)-(21) are 
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The derivatives of these expressions with respect to the local co-ordinate system as given in the 
first part of equation (33) are obtained from the above formulae. 

The transformation between global and local co-ordinate systems yields 

The derivatives in the second part of equation (33) are obtained from these equations. 

APPENDIX 11: SLOPES AND CURVATURES 

Referring to Figure 16, a parabola is fitted through every three contiguous points on the free 
surface. The parabola is rotated so that its axis is normal to the line joining the two end points; 
therefore 

p = z sin $ + x cos $, 

q = z  cos $ - x  sin $, 

Figure 16. Three surface nodes fitted to a parabola 



FREE SURFACE HYDRODYNAMIC CALCULATIONS 

where 
Z j + l - z j - 1  

X j +  1 -Xi -  1 
tan $ = 

In this rotated system, if the equation for the parabola is 

= up2 + bp + C, 
the coefficients are given as 

(2apj + b) cos tj + sin $ 
-(2apj+ b) sin $ + cos +’ tanpi= 

- 2a 
[(2apj + b)2 + 11 3/2 . 

R;’= 

The following differentiation rule is used to find the correction terms: 

a s  aa a s  ab 
cos * +- -+- - d9- 8 s  -=- 

dxk aPk a U  ax, ab ax,’ 

where F is A tan B or AR - I .  Introducing equation (34) to express Ax and Az in terms of A$ yields 
the final form for the variations of the slope and the curvature: 

and 

A tan pi= B j  AqJ- + B?Aq;+ Bf AqJ+ 1, 

where 
(93) 

(94) 

(95) 
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where 

sin y j -  1, 
d(R-') 

cosyj-'+- 

cos yj+- A? =--- 

sin y j +  '. cos y j +  1 +- A; =--- 
dxj+ 1 dzj+ 1 

d(R-') 
dxj-' dzj- I 

d(R-') 

AT =- 

sin y j ,  
d(R-l) 

dxj dzj 

d(R-') d(R-') 

The derivatives in (94) and (96) are calculated using (91) and (92). 

APPENDIX 111: TRUNCATION ERROR ANALYSIS 

The boundary integral equation (16) is approximated to second-order in space when linear 
elements and shape functions and analytical integrations of equations (22H25) are used. The 
dynamic boundary condition (15) is approximated with two-point time and three-point spatial 
finite differences, the latter for a@/as. The leading errors are of order (8-0.5)At, (At)' and (As)'. 
The kinematic boundary condition (14) is discretized in time only and the leading errors involve 
(8-0.5)At and (At)'. From test problems and an examination of coefficient derivatives, it appears 
that the leading errors generally arise from the dynamic boundary condition.' ' 

The terms discretized in the dynamic boundary condition are contained essentially in the 
simplified equation 

P+!(!!?)'=, at 2 as 

With the consistent method this is discretized as 

(97) 

where 8 is the implicitness factor and (a@/as)j denotes the three-point finite difference approxima- 
tion to the tangential derivative of the potential: 

where the coefficients multiplying the potential are defined by (44). For comparison, an 
Eulerian-Lagrangian formulation would discretize (97) as 

Note that the two formulations are linear and non-linear respectively in (a@/as):+'. Thus the 
Eulerian-Lagrangian formulation may require iteration over a time step but the consistent 
formulation does not, although the geometry at k+ 1 is respected by the method. 

The modified equations corresponding to (98) and (100) are constructed by using double 
Taylor series expansions about time level k + 8 and position j to replace each of the @-terms. The 
product terms on the right sides are not linearized. Each such term is replaced by products of 
series expansions. The modified equations which result contain derivatives in t which are replaced 
by derivatives in s only, using not the original partial differential equation (97) but the modified 
equations themselves.'* 
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The modified equation corresponding to the consistent method, equation (98), is 

where all derivatives are evaluated at time level k + 8  and position j .  The modified equation 
corresponding to the Eulerian-Lagrangian formulation differs from (101) in the (At)2-term, 
wherein $8 is replaced by 28. The two schemes are thus identical in their first-order time and 
second-order space truncation errors, but differ at terms O(At2) and higher. 
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